[tex]\text{Consider the function}\\
\\
y=6\tan(x/2)-3\\
\\
\text{to find the x-intercepts of the graph of the function, we put y=0.}\\
\text{so we get}\\
\\
6\tan(x/2)-3=0\\
\\
\Rightarrow 6\tan(x/2)=3\\
\\
\Rightarrow \tan(x/2)=\frac{3}{6}\\
\\
\Rightarrow \tan(x/2)=\frac{1}{2}\\
\\
\Rightarrow \frac{x}{2}=\tan^{-1}\left (\frac{1}{2} \right )[/tex]
[tex]\Rightarrow \frac{x}{2}\approx 0.4636\\
\\
\text{the period of tangent is }\pi, \text{ so we have}\\
\\
\Rightarrow \frac{x}{2}\approx 0.4636+n\pi\\
\\
\Rightarrow x=2( 0.4636+n\pi)\\ \\
\Rightarrow x=0.9273+2n\pi\\
\\
\text{Hence the x-itnercepts of the function are: }(0.9273+2n\pi,\ 0)[/tex]