Match wash hypotenuse length with the leg lengths that will create a right triangle

Answer:
Step-by-step explanation:
Using the Pythagoras theorem, we have
[tex](Hyp)^2=(Leg)^2+(Leg)^2[/tex]
(A) The given value of hypotenuse is:
[tex]\sqrt{6} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{6}=\sqrt{(\sqrt{5})^2 +(1)^2}[/tex]
Thus, one leg is [tex]\sqrt{5} units[/tex] and the other is [tex]1 units[/tex].
(B)The given value of hypotenuse is:
[tex]\sqrt{5} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{5}=\sqrt{(\sqrt{2})^2 +(\sqrt{3})^2}[/tex]
Thus, one leg is [tex]\sqrt{2} units[/tex] and the other is [tex]\sqrt{3} units[/tex].
(C) The given value of hypotenuse is:
[tex]\sqrt{8} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{8}=\sqrt{(\sqrt{5})^2 +(\sqrt{3})^2}[/tex]
Thus, one leg is [tex]\sqrt{5} units[/tex] and the other is [tex]\sqrt{3} units[/tex].
(D) The given value of hypotenuse is:
[tex]\sqrt{3} units[/tex]
Now, using the Pythagoras theorem,
[tex]\sqrt{3}=\sqrt{(\sqrt{2})^2 +(1)^2}[/tex]
Thus, one leg is [tex]\sqrt{2} units[/tex] and the other is [tex]1 units[/tex].