If f(x)=3-2x and g(x)=1/x+5, What is the value of (f/g) (8)?

(f/g)(8)=f(8)/g(8)
find f(8) and g(8) to mke it easier
f(8)=3-(8)=3-2(8)=3-16=-13
g(8)=1/(5+8)=1/13
so (f/g)(8)=-13/(1/13)=-13*13=-169
answer is -169
Answer: -169
Step-by-step explanation:
Given functions : [tex]f(x)=3-2x\text{ and }g(x)=\dfrac{1}{x+5}[/tex]
Now, the rational function (f/g) will be:
[tex](f/g)(x)=\dfrac{f(x)}{g(x)}\\\\\\\Rightarrow\ (f/g)(x)=\dfrac{3-2x}{\dfrac{1}{x+5}}\\\\\\\Rightarrow\ (f/g)(x)=(3-2x)(x+5)[/tex]
Now, [tex](f/g)(8)=(3-2(8))((8)+5)=(-13)(13)=-169[/tex]
Hence, the value of [tex](f/g)(8)=-169[/tex]