The length of AD is [tex]\dfrac{8}{3}[/tex].
Given:
BD is the angle bisector of the triangle ABC.
The figure of the triangle ABC.
To find:
The length of AD.
Explanation:
According to the Angle Bisector Theorem, the angle bisector of a triangle divides the opposite side in the same proportion of the other two sides.
Let [tex]x[/tex] be the length of AD. Then, the length of DC is [tex]6-x[/tex].
Using the Angle Bisector Theorem, we get
[tex]\dfrac{8}{10}=\dfrac{x}{6-x}[/tex]
[tex]\dfrac{4}{5}=\dfrac{x}{6-x}[/tex]
[tex]4(6-x)=5(x)[/tex]
[tex]24-4x=5x[/tex]
[tex]24=5x+4x[/tex]
[tex]24=9x[/tex]
[tex]\dfrac{24}{9}=x[/tex]
[tex]\dfrac{8}{3}=x[/tex]
Therefore, the length of AD is [tex]\dfrac{8}{3}[/tex].
Learn more:
https://brainly.com/question/10130247