Let's say we want to add 1/2 and 1/3. Since they both have different denominators, first we find the LCD:
[tex]\text{LCD}(2,3)=2\cdot3=6[/tex]
Now that we have the LCD, we express the fractions with a common denominator:
[tex]\frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}[/tex]
Now that we have both fractions with the same denominator, we can add directly the numerators and keep the denominator:
[tex]\frac{3}{6}+\frac{2}{6}=\frac{5}{6}[/tex]
We have that 1/2+1/3=5/6. Since 5/6 can't be reduced anymore, we have found the result.
To summarize, the algorithm to solve addition of fraction would be like this: