Respuesta :

We are to find the future value

The future value can be calculated using

[tex]FV=PV(1+\frac{r}{100\alpha})^{n\alpha}[/tex]

From the given information

PV = $4013

r = 4.1

n = 9 years

Since the investment is compounded quarterly then

α = 4

By substituting these values we get

[tex]FV=\text{ \$4013(1 }+\frac{4.1}{100(4)})^{9(4)}[/tex]

Simplifying the equation we get

[tex]\begin{gathered} FV=\text{ \$}4013(1\text{ }+\frac{4.1}{400})^{36} \\ FV=\text{ \$}4013(1\text{ }+0.01025)^{36} \\ FV=\text{ \$}4013(1.01025)^{36} \\ FV=\text{ \$}4013(1.44436) \\ FV=\text{\$}5793.17 \end{gathered}[/tex]

Therefore,

The Future Value is $5793.17