Respuesta :

The mean absolute deviation is given by the next formula:

[tex]\text{MAD}=\frac{1}{n}\sum ^{\square}_i|x_i-\bar{x}|[/tex]

Where n is the number of points in the data set and x with a bar on top is the mean.

In our case,

[tex]\bar{x}=\frac{1}{25}(5\cdot1+5\cdot2+4\cdot3+4\cdot4+6\cdot5+6\cdot1)=\frac{79}{25}[/tex]

and n=25.

Then,

[tex]\text{MAD}=\frac{1}{25}(5|1-\frac{79}{25}|+5|2-\frac{79}{25}|+4|3-\frac{79}{25}|+4|4-\frac{79}{25}|+6|5-\frac{79}{25}|+|6-\frac{79}{25}|)[/tex]

Finally,

[tex]\text{MAD}=\frac{862}{625}\approx1.4[/tex]

The answer is 1.4 once rounded.