POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x) = 32 2 f () = ( 1 ) 28


First, we must evaluate each function at the given values of x.
When x=-2, we have
[tex]\begin{gathered} f(x)=2^x\Rightarrow f(-2)=2^{-2}=\frac{1}{2^2}=\frac{1}{4}=0.25 \\ \end{gathered}[/tex][tex]f(x)=(\frac{1}{3})^x\Rightarrow f(-2)=(\frac{1}{3})^{-2}=\frac{1}{3^{-2}}=3^2=9[/tex][tex]f(x)=3^x\Rightarrow f(-2)=3^{-2}=\frac{1}{3^2}=\frac{1}{9}=0.11[/tex][tex]f(x)=(\frac{1}{2})^x\Rightarrow f(-2)=(\frac{1}{2})^{-2}=\frac{1}{2^{-2}}=2^2=4[/tex]Now, we must compare these result with the tables. Then the solutions are: