Identify p, q, and r if necessary. Then translate each argument to symbals and use a truth table to decide if the argument is valid or invalid.

Let p denote the statement "It snows", and q denote tthe statement "I can go snowboarding"
The we need to draw a table for
(p => q)v(-p => q)
p q -p -q p=>q -p => -q (p => q)v(-p => q)
T T F F T T T
T F F T F T T
F T T F T F T
F F T T T T T
The argument is valid, since the last column has truth all through.