Respuesta :

Bisects: to divide into two equal parts.

In this case, DB is bisecting the ∠ABC, then the ∠ABD

As OP is bisecting ∠MON, that means that ∠NOP and ∠POM have the same measure.

Then:

[tex]m\angle MON=m\angle NOP+m\angle POM[/tex]

As ∠NOP = ∠POM, we get:

[tex]m\angle MON=m\angle NOP+m\angle NOP=2\cdot m\angle NOP[/tex]

Replacing the value we get:

[tex]m\angle MON=2\cdot20=40[/tex]

Based on this, we can use the trigonometric functions, as we have an angle and one side. Specifically, the tangent function:

[tex]\tan \alpha=\frac{opposite}{\text{adyacent}}[/tex]

First, to calculate NP, we get the following:

[tex]\tan 20=\frac{NP}{6}[/tex]

Isolating for NP:

[tex]NP=6\cdot\tan 20[/tex][tex]NP=2.18[/tex]

Then, calculating for MN we get the following:

[tex]\tan 40=\frac{MN}{6}[/tex]

Isolating for MN:

[tex]MN=6\cdot\tan 40[/tex][tex]MN=5.03[/tex]

Answer:

• NP = 2.18

,

• MN = 5.03