Respuesta :

From the given question

The volume of a cone is:

[tex]V=\frac{1}{3}\times\pi\times r^3[/tex]

Now,

We are given with radius and the height of the cone

So,

We can solve for the radius as a function of water level using ratio and proportion

Then,

[tex]\begin{gathered} \frac{3}{9}=\frac{r}{h} \\ r=\frac{h}{3} \end{gathered}[/tex]

Substitute the value of r into the above formula

So,

[tex]\begin{gathered} V=\frac{1}{3}\times\pi\times r^3 \\ V=\frac{1}{3}\times\pi\times(\frac{h}{3})^3 \\ V=\frac{h^3}{81}\times\pi \end{gathered}[/tex]

Then,

Taking derivatives

[tex]\begin{gathered} V=\frac{h^3}{81}\times\pi \\ \frac{dV}{dt}=\frac{h^3}{81}\times\pi \end{gathered}[/tex]

The,

Solving for the dh/dt

So,

[tex]\begin{gathered} \frac{dV}{dt}=10\text{ and h=3, then } \\ \frac{dh}{dt}=9.55m\text{ /s} \end{gathered}[/tex]

Hence, the answer is 9.55.