Solution:
The volume of a cylinder is expressed as
[tex]\begin{gathered} volume=\pi r^2h \\ where \\ r\Rightarrow radius\text{ of its circular end} \\ h\Rightarrow height\text{ of the cylinder} \end{gathered}[/tex]
Given the cylindrical water tank below:
where
[tex]\begin{gathered} r=6.5\text{ ft} \\ h=12\text{ ft} \\ \pi=3.14 \end{gathered}[/tex]
By substitution, we have
[tex]\begin{gathered} volume\text{ = 3.14}\times(6.5)^2\times12 \\ =1591.98 \\ \Rightarrow volume\approx1592\text{ ft}^3\text{ \lparen nearest whole number\rparen} \end{gathered}[/tex]
Hence, the volume of the cylindrical water tank, to the nearest whole number, is
[tex]1592\text{ ft}^3[/tex]