Respuesta :

Graph the function by first finding the relative extrema.

__________________________________

f(x) = x^3 + 4x^2 - x - 4​

f'(x) = 3x ^2 + 8x -1

c= 3x ^2 + 8x -1

Using the quadratic equation

[tex]x=\frac{-b\text{ }\pm\text{ }^{}\sqrt[]{b^2\text{ -4ac}}}{2a}\text{ = }\frac{-(8)\text{ }\pm\text{ }^{}\sqrt[]{8^2\text{ -4}\cdot3\cdot\text{ (-1)}}}{2\cdot3}[/tex]

___________________

They want you to see the extreme points, but the easiest way is to evaluate 0 and check which graph matches

f(0) = 0^3 + 40^2 - 0 - 4​

Point (0, -4)

Ver imagen TrinleyH441106
Ver imagen TrinleyH441106