Simplify the expression.3x 648x448OA. 18942 $3x2y2O B. 189272 3ry?Oc. 18x272 2xy2OD. 9327 32x32ResetNext

Given:
[tex]3x\sqrt[3]{648x^4y^8}[/tex]Solve:
[tex]\begin{gathered} =3x\sqrt[3]{648x^4y^8} \\ =3x(27\times8\times3\times x^3\times x\times y^6\times y^2)^{\frac{1}{3}} \\ =3x(3^3\times2^3\times3\times x^3\times x\times y^6\times y^2)^{\frac{1}{3}} \\ =3x(3)^{\frac{3}{3}}(2)^{\frac{3}{3}}(x)^{\frac{3}{3}}(y)^{\frac{6}{3}}\sqrt[3]{3xy^2}^{} \\ =3x\times3\times2\times x\times y^2\sqrt[3]{3xy^2} \\ =18x^2y^2\sqrt[3]{3xy^2} \end{gathered}[/tex]