[tex]2x^{2} + 20 + 48[/tex]Completely factor the given polynomial, if possible. If the polynomial cannot be factored write "not factorable".

Given:
The equation is,
[tex]2x^2+20x+48[/tex]Explanation:
Taking out 2 as common from the expression.
[tex]2x^2+20x+48=2(x^2+10x+24)[/tex]Factorise the equation by splitting the middle term.
[tex]\begin{gathered} 2(x^2+10x+24)=2(x^2+6x+4x+24) \\ =2\lbrack x(x+6)+4(x+6)\rbrack \\ =2(x+4)(x+6) \end{gathered}[/tex]So answer is 2(x + 4)(x + 6)