1. ∠XVR =
2. ∠RVS =
3. ∠WVS =
4. ∠RST =
5. ∠RSV =
6. ∠VSU =
7. ∠UST =
8. ∠TUS =

Answer/Step-by-step explanation:
1. ∠XVR = 180 - <XVW (angle on a straight line)
∠XVR = 180 - 55°
∠XVR = 125°
2. ∠RVS = <XVW (Vertical angles are congruent)
∠RVS = 55°
3. ∠WVS = ∠XVR (vertical angles are congruent)
∠WVS = 125°
4. ∠RST = <R + <RVS (exterior angle theorem)
<RST = 55 + 55
<RST = 110°
5. ∠RSV = 180 - (<R + <RVS) (sum of triangle)
∠RSV = 180 - (55 + 55)
∠RSV = 70°
6. ∠VSU = <RST (vertical angles are congruent)
<VSU = 70°
7. ∠UST = <RSV (vertical angles)
<UST = 70°
8. ∠TUS = 180 - (<UST + <T) (sum of triangle)
<TUS = 180 - (70 + 71)
<TUS = 39°