Use quadratic formula to find both solutions to the quadratic equation given below . 3x^2-5x-1=0

Answer:
B. [tex]\frac{5+\sqrt{37} }{6}[/tex]
D. [tex]\frac{5-\sqrt{37} }{6}[/tex]
Explanation:
Given expression:
3x² - 5x -1 = 0
The quadratic formula is;
x = [tex]\frac{-b +/- \sqrt{b^{2} -4ac} }{2a}[/tex]
a = 3
b = -5
c = -1
Insert the parameters:
x = [tex]\frac{-(-5)+/-\sqrt{-5^{2} - 4(3)(-1) } }{2(3)}[/tex]
x = [tex]\frac{5 +/- \sqrt{25 + 12} }{6}[/tex]
x = [tex]\frac{5 +/- \sqrt{37} }{6}[/tex]
So;
x = [tex]\frac{5+\sqrt{37} }{6}[/tex] or [tex]\frac{5-\sqrt{37} }{6}[/tex]