Alternate Interior Angles Theorem a. b. c. Corresponding Angles Flow Proof a. b. c. d. e. Proof Diagram a. b. c.



Answer:
Step-by-step explanation:
(1). m∠5 = 40° → (a) Given
m∠2 = 140° → (b) Given
∠5 and ∠2 are supplementary angles → (c) Interior angles on the same side of the transversal.
∠5 and ∠2 are the same side interior angles → (d) Both angles are supplementary
a║b → (e) By interior angles theorem of the parallel lines.
(2). Statements Reasons
1. l║n 1. Given
2. ∠2 ≅ ∠6 2. Corresponding angles
3. ∠4 ≅ ∠2 3. Vertical angles
4. ∠6 ≅ ∠4 4. Transitive property of equality
(3). Statements Reasons
1. ∠1 ≅ ∠5 1. Given
2. ∠4 ≅ ∠1 2. Vertical angles
3. ∠4 ≅ ∠5 3. Alternate interior angles
4. p║r 4. Definition of parallel lines