contestada

What is one of the solutions to the following system of equations?

y2 + x2 = 65
y + x = 7

A (8, −1)
B (1, 6)
C (6, 1)
D (9, −2)

Respuesta :

that would be A

check...(8,-1)
y^2 + x^2 = 65
-1^2 + 8^2 = 65
1 + 64 = 65
65 = 65 (correct)

y + x = 7....(8,-1)
-1 + 8 = 7
7 = 7 (correct)

Answer:

(8,-1)

Step-by-step explanation:

Given :   [tex]x^{2} +y^{2} =65[/tex]

               [tex]x+y=7[/tex]

To Find: solution of given system of equations.

Solution:

Equation a :   [tex]x^{2} +y^{2} =65[/tex]

Equation b :  [tex]x+y=7[/tex]

Substitute the value of y from equation b in equation a

y from equation b : y = 7-x

Now substitute value of y in equation a

Thus equation a becomes:

 [tex]x^{2} +(7-x)^{2} =65[/tex]

[tex]x^{2} +49+x^{2}-14x =65[/tex]

[tex]2x^{2} -14x =65-49[/tex]

[tex]x^{2} -7x -8=0[/tex]

[tex]x^{2} -8x+x -8=0[/tex]

[tex]x(x-8)+1(x-8)=0[/tex]

[tex](x+1)(x-8)=0[/tex]

⇒ x= -1 and x = 8

Now substitute values of x  in equation b to obtains values of y

⇒ [tex]x+y=7[/tex]

for x = -1

⇒ [tex]-1+y=7[/tex]

⇒ [tex]y=7+1[/tex]

⇒ [tex]y=8[/tex]

Thus (x,y)=(-1,8)

For x =8

⇒ [tex]8+y=7[/tex]

⇒ [tex]y=7-8[/tex]

⇒ [tex]y=-1[/tex]

Thus (x,y)=(8,-1)

Hence Option A is the correct solution .