supervisor records the repair cost for 25 randomly selected dryers. A sample mean of $93.36 and standard deviation of $19.95 are subsequently computed. Determine the 98% confidence interval for the mean repair cost for the dryers. Assume the population is approximately normal. Find the critical value that should be used in constructing the confidence interval.

Respuesta :

Answer with explanation:

The confidence interval for population mean (when population standard deviation is unknown) is given by :-

[tex]\overline{x}-t^*\dfrac{s}{\sqrt{n}}< \mu<\overline{x}+z^*\dfrac{s}{\sqrt{n}}[/tex]

, where n= sample size

[tex]\overline{x}[/tex] = Sample mean

s= sample size

t* = Critical value.

Given : n= 25

Degree of freedom : [tex]df=n-1=24[/tex]

[tex]\overline{x}= \$93.36[/tex]

[tex]s=\ $19.95[/tex]

Significance level for 98% confidence interval : [tex]\alpha=1-0.98=0.02[/tex]

Using t-distribution table ,

Two-tailed critical value for 98% confidence interval :

[tex]t^*=t_{\alpha/2,\ df}=t_{0.01,\ 24}=2.4922[/tex]

The critical value that should be used in constructing the confidence interval = 2.4922

Then, the 95% confidence interval would be :-

[tex]93.36-(2.4922)\dfrac{19.95}{\sqrt{25}}< \mu<93.36+(2.4922)\dfrac{19.95}{\sqrt{25}}[/tex]

[tex]=93.36-9.943878< \mu<93.36+9.943878[/tex]

[tex]=93.36-9.943878< \mu<93.36+9.943878[/tex]

[tex]=83.416122< \mu<103.303878\approx83.4161<\mu<103.3039[/tex]

Hence, the 98% confidence interval for the mean repair cost for the dryers. = [tex]83.4161<\mu<103.3039[/tex]