If P(x,y) is the point on the unit circle determined by real numbers θ, then tanθ = _.

Answer:
B
Step-by-step explanation:
Coordinates of the point P(x,y) on the unit circle can be derived using
[tex]\left\{\begin{array}{l}x=\cos \theta\\ \\y=\sin \theta\end{array}\right.[/tex]
Definition:
[tex]\tan \theta=\dfrac{\sin \theta}{\cos \theta}[/tex]
Using definition of [tex]\tan \theta[/tex] and definition of point coordinates on the unit circle, we can conclude that
[tex]\tan \theta=\dfrac{\sin \theta}{\cos \theta}\\ \\\tan \theta=\dfrac{y}{x}[/tex]