Hi, PLEASE HELP! In △ABC, m∠A=32°, m∠B=25°, and a=18. Find c to the nearest tenth.
A. 28.5
B. 26.1
C. 25.2
D. 27.6

Answer:
the correct answer is option A
Step-by-step explanation:
given,
∠A=32° , ∠B=25° ∠C= 180°-(32°+25°) = 123°
a=18,
using sine law
[tex]\frac{sin A}{a}=\frac{sin B}{b}=\frac{sin C}{c}[/tex]
using equation,
[tex]\frac{sin A}{a}=\frac{sin C}{c}\\[/tex]
sin 123° = 0.0294 c
c = 28.5
Hence, the correct answer is option A