What is the difference of the rational expressions below? 2/x-2 - 3/x

Answer: [tex]\frac{6-x}{x^{2}-2x}[/tex]
Step-by-step explanation:
Find the least common multiple (LCM) of the denominators. This is:
[tex]LCM=x(x-2)[/tex]
Divide the LCM by each denominator and multiply the result by each numerator, then you obtain:
[tex]\frac{2x-3(x-2)}{x(x-2)}[/tex]
Apply the distributive property, then you obtain:
[tex]\frac{2x-3x+6}{x^{2}-2x}[/tex]
Add like terms, then you obtain:
[tex]\frac{6-x}{x^{2}-2x}[/tex]
Answer:
The correct answer is [tex] \frac { 6 - x } { x^2 - 2x } [/tex].
Step-by-step explanation:
We are given the following expression and we are to simplify it by finding the difference of these two rational terms:
[tex] \frac {2} { x - 2 } - \frac { 3 } { x } [/tex]
Taking their LCM to get:
[tex] \frac { 2x - 3 ( x - 2 )} { x ( x - 2 )} [/tex]
[tex] \frac { 2x - 3x + 6 } { x^2 - 2x } [/tex]
[tex] \frac { -x + 6 } { x^2 - 2x } [/tex]
[tex] \frac { 6 - x } { x^2 - 2x } [/tex]