in the figure AB equals how many inches AC equals how many inches

Answer: AB = 8.4 inches and AC= 13 inches
Step-by-step explanation:
In the given picture, we have a right triangle.
The sides adjacent to [tex]40^{\circ}=10\ inches[/tex]
Applying trigonometry, we have
[tex]\cos 40^{\circ}=\dfrac{\text{sides adjacent to } 40^{\circ}}{\text{Hypotenuse}}\\\\\Rightarrow\ 0.76604444311=\dfrac{10}{H}\\\\\Rightarrow\ H=13.0540728935\approx13\ inches[/tex]
Thus, AC= 13 inches
Also,
[tex]\tan 40^{\circ}=\dfrac{AB}{10}\\\\\Rightarrow AB=10\times0.83909963117\\\\\Rightarrow\ AB=8.3909963117\approx8.4\ inches[/tex]